Conductive silver ink,silver conductive paint,silver conductive paste,silver condutive glue,silver conductive adhesive,condutive silver paint,conductive silver paste

Electrically conductive adhesive products are primarily used for electronics applications where components need to be held in place and electrical current can be passed between them.

Depending on gap between components, most general adhesives (such as anaerobics, cyanoacrylates, epoxies, and acrylic-based adhesives) act as an electrical insulator. Some offer improved thermal conductivity to help with thermal management of electronic components and heat sinks, directing heat away from sensitive components.  Because in many cases (particularly when using an anaerobic or cyanoacrylate adhesive) there is no glue line control and effectively parts are touching (with adhesives filling in microscopic crevices), some electrical charge can still be transferred as there is enough metal to metal contact still occurring.

Certain temperature-sensitive electronic components cannot be soldered (as the intense heat of liquid solder and the soldering iron can cause damage to the component). This type of application calls for an electrically conductive adhesive that can be used in place of solder.  PCBs with components attached to both sides can also benefit from using an electrically conductive adhesive as assembly process is easier without risk of components dropping off the underside when parts are soldered on the top.  Using electrically conductive adhesive for an entire electrical assembly negates the requirement to undergo a solder re-flow process.

Applications for electrically conductive adhesives aren’t just limited to bonding components onto PCBs or die attach, they can be very useful for other electronic applications where substrates are temperature sensitive – such as for touch-panels, LCD displays, coating and bonding RFID chips, and mounting LEDs. Solar cells also use adhesives instead of solder as there is less warpage and damage to the sensitive wafers that make up solar cells.

Selecting an Electrically Conductive Adhesive

There are some vital points to consider when selecting an electrically conductive adhesive:

  • Level of electrical conductivity (or volume resistivity).
  • Viscosity and rheology of the adhesive – does it need to flow well or stand as a proud drop (with high “wet” strength).
  • Filler particle size – what is acceptable or necessary?
  • Curing mechanism and cure speed – how do you plan to cure the adhesive e.g. two component mix and then room temperature cure, or heat cure – if the application involves temperature sensitive components, is a heat cure suitable? How quickly does the adhesive need to cure?
  • Production line considerations – how fast is the throughput? Is the process fully automated or manual? How will the adhesive be dispensed?
  • Nature of the materials being bonded and level of adhesion required – joint design, strength required, any differential thermal expansion and contraction, Thermal conductivity, glass transition temperature, flexibility requirements.
  • Environmental service conditions – temperature, exposure to chemicals, humidity, etc.
  • Tests that the adhesive must pass e.g. drop tests, accelerated aging tests.
  • Colour, smell, health and safety considerations, shipping, storage, and shelf life.
  • And not forgetting one of the most important considerations – cost!

 

Types of Electrically Conductive Adhesive

Electrically conductive adhesive can be based on several different chemistries:

  • Electrically conductive silicone adhesive – these can be graphite filled and are often used for EMI/RFI shielding or for antistatic systems. These materials are generally a very high viscosity, thick consistency making them suited to larger applications such as gasketing or bonding / sealing large areas. The electrical conductivity is fairly limited (so they are not a good replacement for solder). Volume resistivity is typically about 0.09 Ohms∙cm.
  • Two-component epoxy adhesive – these comprise resin and hardener and are available in a range of viscosities (if heavily filled with conductive metal, viscosity can become quite high). If filled with silver, volume resistivity can be as low as 0.0001 Ohms∙cm.
  • One component epoxy adhesive – these are normally heat cured so care must be taken to choose a cure schedule which won’t compromise sensitive electronic components. Snap-cure frozen epoxies are also popular for the electronics industry; these products require freezer storage and cure once they reach room temperature. These can be expensive to transport and store. A silver filled one-part epoxy can achieve conductivity as high as a similarly filled two-part epoxy.
  • Silver-filled polyurethane adhesives – these are starting to appear on the market. They are two-part adhesives, so they either require mixing or they are supplied pre-mixed and frozen like the snap-cure epoxies. They offer high peel strength and flexibility. As they are silver filled, high levels of conductivity can be achieved (around 0.0001 Ohms∙cm to 0.0004 Ohms∙cm).
  • conductive ink conductive ink pen conductive inks for screen printing conductive ink screen printing electrically conductive ink electrically conductive ink pen conductive ink binder conductive ink board conductive ink circuits conductive ink companies conductive ink cartridge conductive ink conductivity conductive ink carbon conductive ink copper conductive ink composition conductive ink circuit pen conductive ink china conductive ink cards conductive ink diy conductive ink dispenser conductive ink display conductive ink drawings conductive ink demo
    Questions : What’s the difference between Conductive ink  and conductive paint,conductive paste,conductive glue/adhesive?                                                                                          Ask:  The conductive paint is usually brushed or sprayed on the surface of the product. The conductive paste is usually used for screen printing or the concentration is thicker than the paint. The conductive paste is usually of similar concentration to the paste phase and is used for conductive bonding. In fact, there is no difference between these four kinds of skills, but the name is different, the usage is different, and the materials are still the same. Is a similar product.                                                                                                                                            Questions: What;s the difference between condutive copper paint and Conductive silver paint?What;s the difference between condutive copper ink and Conductive silver ink?What;s the difference between condutive copper paste and Conductive silver paste?What;s the difference between condutive copper glue and Conductive silver glue?What;s the difference between condutive copper adhesive and Conductive silver adhesive?                  Ask: The main material of our conductive silver paint is silver, and the main material of conductive copper paint is copper + silver. Silver is the best conductive material, copper is the second best conductive material, but copper is much cheaper than silver, so we have silver and copper materials to meet the needs of different customers. Conductive silver paste is generally required for high conductivity applications, and conductive copper lacquers that are not particularly high can be used with silver + copper. Users choose as needed。                                                                                                                                                                     

    Shenzhen Enjoy-ing Technology CO.,LTD

    Enjoy-ing International(HK)Limited

  • Tel:+0086-755-29960801       +8618038018108     +8618576670878
  • Whatsapp:      +8618038018108       +8618576670878
  • Skype:+8618038018108     +8618576670878
  • QQ:18038018108         18576670878
  • Wechat: 18038018108       18576670878
  • http://enjoy-ing.en.alibaba.com